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plete and the product began to crystallize out of solution. The crystals were 
collected after cooling to -20 0C and washed with water, ethanol, and ether 
(59% yield, mp 219-220 "C). (In addition to other criteria, the identity of 
the products prepared by these methods was verified by mixture melting 
point determinations.) Anal. Calcd for 013H11N3O3: C, 60.70; H, 4.31; N, 
16.33. Found: C, 60.71; H, 4.37; N, 16.33. 

(15) In aquoeus alkaline solution this product was converted into 3,10-di-
methyl-1-hydroxy-1,5-dideazaisoalloxazine (Vl).'**' Cleavage of the epoxide 
ring via Michael addition of OH - at C-1 would yield a 1,5-dihydroxy-1,5-
dihydro intermediate. Formation of Vl and the associated lag phase could 
be accounted for by dehydration of this intermediate initiated by ionization 
at C-1 (pK= 6.8 for 1,5-dihydro-1,5-dideazaisollaxazine4b). 

(16) The rate constant observed for the reaction of thioxane (Aldrich, vacuum 
distilled) with H2O2 (k = 6.7 X 10~5 M - 1 s _ 1 in methanol at 25 0C) is similar 
to the value previously reported under the same conditions. Dankleff, M. 
A. P.; Curci, R.; Edwards, J. O.; Pyun, H. Y. J. Am. Chem. Soc. 1968, 90, 
3209-3218. 

(17) Values of 8.7 X 1O-2 and 9.6 X 1O-2 M - 1 s" 1 were obtained for rate 
constants with IHa and IHb, respectively, in methanol at 25 0C. The same 
results were obtained with samples of IHb prepared by different 
methods.14 

(18) (a) Charpentier-Morize, M.; Laszlo, P.; Mayer, M. Bull. Soc. Chim. Fr. 1966, 
2264-2269. (b) Dullaghan, M. E.; Nord, F. F. Mikrochim. Acta 1953, 
17-21. 

(19) (a) This instability, which is expected for an epoxide derivative, has pre­
viously been described.4 (b) Rates of decomposition were determined in 
separate experiments under comparable conditions by monitoring the 
decrease in absorption at 330 nm observed immediately after preparing 
solutions of III in carbonate buffer. 

(20) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; lnterscience 
Publishers: New York, 1967; pp 308-310. 

(21) Organic peroxy acids are generally weaker acids than the corresponding 
carboxylic acid, suggesting a similar relationship for the two ionizable 
protons in peroxycarbonic acid: Curci, R.; Edwards, J. O. In "Organic 
Peroxides", Swern, D., Ed.; Wiley-lnterscience: New York, 1970; Vol. 1, 
pp 205-207. 
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Total Synthesis of d/-Helenalin 

Sir: 

The group of sesquiterpenes called pseudoguaianolides has 
attracted considerable chemical attention not only because of 
their structurally challenging and esthetically pleasing nature, 
but also because of their cytotoxic properties.' Representatives 
of this class of natural products which have succumbed to total 
synthesis are the molecules helenalin,2 confertin,3 and damsin.4 

Our interest in these sesquiterpenes was stimulated by the 
desire to construct them from a common intermediate since 
they all possess a central seven-membered ring which holds the 
major elements of functionality and stereochemistry. Thus, 
we formulated the perhydroazulenone 1 containing an oxygen 
residue at Cg, an olefinic element between C9 and C10, and an 
angular methyl group at C5. Acting in concert, these various 
aspects of 1 should permit stereoselective introduction of a 
methyl group at C10, connection of the carbonaceous portion 
of a lactone residue at C7, and oxygenation at Cf1. Further, the 
oxygen atom borne at C4 should allow functionalization at C2 
and C3, when required. Herein, are described the preparation 
of 1 and its stereoselective conversion into helenalin (2). In the 
accompanying manuscript we report the synthesis of confertin 
and damsin from this same substance. 

We commenced our preparation of 1 starting from the 
readily available enone 3,5 converting this material into the 
lactam 4 (mp 39-42 0C) using technology recently described 
by Barton and co-workers.6 On reaction with lithio dimethyl 
methylphosphonate in THF at —78 0 C, 7 lactam 4 was trans­
formed into the pentalene-derived aldehyde 5 (mp 49-51 0 C) 8 

which in turn gave the desired enone 1 as the only reaction 
product (oil, 50% overall yield from 3) on treatment with 
slightly less than 1 equiv of potassium /ert-butoxide in tert-
butyl alcohol9 (Scheme I). 

Elaboration of 1 into helenalin was initiated by conversion 
of the enone into its C10 a-methyl analogue 6 (mp 66.5-68 0C, 
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" (a) MeNHOH-HCl, C5H5N, 40 0C. (b) TsCl, C5H5N, 22 0C. 
(c) LiCH2PO(OCH3)2, THF, -78 0C. (d) NaOAc, HOAc, H2O, 
Et2O, 0 0C. (e) J-BuOH, ?-BuOK, 22 0C. (f) MeMgBr, CuI, DMS, 
Et2O, 0 0C; HCl, MeOH, 0 0C; p-TSA, C6H6, HOCH2CH2OH, 90 
0C; PCC, NaOAc, CH2Cl2, 22 0C. (g) NaH, Ph2S2, DME, 45 0C; 
m-CPBA, CH2Cl2, 0

 0C; toluene, P(OMe)3, 110 0C; diisobutylalu-
minum hydride, toluene, -40 0C; MeOH, HCl, 0 0C; DNP,p-TSA, 
CH2Cl2, 0 0C. (h) LiHMDS, TMSCl, THF, -78 0C; Pd(OAc)2, 
CH3CN, 22 0C. (i) MeOH, NaOH, H2O2, H2O, 40 °C; triisobuty-
laluminum, toluene, 0 0C. (j) LiCH2CO2Li, HMPA, THF, 50 0C; 
6 N HCl; TMSCL, Et3N, THF, 22 0C; MMC, 140 0C; 30% CH2O, 
Et2NH. (k) MnO2, CHCl3, 45 0C. 

87%) using methylmagnesium bromide in the presence of cu­
prous iodide-dimethyl sulfide.10 Ketone 6 was then trans­
formed into the ketal ketone 7 (mp 33-36 0 C , 97% overall)' ' 
by sequential treatment with HCl-methanol (ter/-butyl ether 
cleavage) followed by reaction with ethylene glycol (ketal 
formation) and finally oxidation with pyridinium chloro-
chromate buffered with sodium acetate.'2 The cyclopentanone 
residue of 7 was then converted into its cyclopentenone ana­
logue 8 (mp 75-77 0 C, 92% overall) by alkylation with di-
phenyl disulfide (NaH, DME), oxidation with w-chloroper-
benzoic acid and sulfoxide elimination (110 0 C, 30 h). '3 Lastly, 
8 was transformed into the cycloheptanone 9 (oil, 84% overall) 
by diisobutylaluminum hydride reduction, ketal hydrolysis, 
and alcohol protection with dihydropyran. 

In order to initiate the final stages of the synthesis, we in­
tended to convert 9 into the cycloheptenone 10, the latter 
substance serving as a vehicle for introduction of the lactone 
and hydroxyl residues. In our planning of this synthesis, we had 
examined molecular models of 9 and had tentatively concluded 
that proton abstraction from 9 might occur predominately at 
C^—a result highly desirable to formulation of 10.14 We were 
pleased to find that 9 gave what appeared to be a single en-
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olsilane product on deprotonation in the kinetic manner with 
lithium hexamethyldisilazane and trapping of the resulting 
enolate with trimethylsilyl chloride.15 The structure of this 
substance was not forthcoming however, until it was treated 
with palladium acetate (trimeric) in anhydrous acetoni-
trile—whereupon the enone 10 (oil, 73%) was isolated.16 

Basic hydrogen peroxide treatment of 10 and subsequent 
reduction of the a-epoxy ketone with triisobutylaluminum gave 
the trans-epoxy alcohol l l .1 7 This material, without purifi­
cation, was submitted to epoxide ring opening using an excess 
of dilithioacetate in hexamethylphosphoramide and DNfE, 
Acid workup of the reaction served both to secure formation 
of the cis lactone and to hydrolyze the THP residue—this 
product was treated with trimethylsilyl chloride and then pu­
rified to give the tricyclic lactone derivative 12 (mp 121-122 
0C. 55% from 10).18 

Methylenation of the lactone by treatment with methoxy-
magnesium carbonate (20 equiv, 140 0C, 2 h), followed by 
reaction of the resultant lactone acid 13 with 30% formalin 
solution containing diethylamine, afforded crystalline dihy-
drohelenalin, 14 (mp 156.5-157.5 0C) in 76% yield from 12.19 

Lastly, oxidation of 14 with manganese dioxide gave crystalline 
racemic helenalin, mp 224-226 0C, in 6.6% overall yield from 
3. This material was found identical with a sample of synthetic 
helenalin kindly provided by Professor P. Grieco—further, the 
substance was found identical except for optical rotation to 
natural helenalin generously provided by Professor W. 
Herz.20 
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Total Syntheses of d/-Confertin and d/-Damsin 

Sir: 

In the preceeding manuscript we described the stereose­
lective conversion of the perhydroazulenone 1 into the 
sesquiterpene helenalin; herein, we report the transformation 
of 1 into the pseudoguaianolides confertin (2)1 and damsin 
(3).2 Introduction of a /3-oriented methyl group at Cio and 
attachment of an acetic acid residue at C7 are required for the 
elaboration of 1 into confertin, whereas a 1,3 transposition of 
oxygen from Cs to C6 together with the previously stipulated 
manipulations at CJO and C7 are demanded for obtaining 
damsin from 1. 

The synthesis of 2 and 3 commences by addition of lithium 
dimethylcuprate to 1 followed by trapping of the resulting 
enolate with chlorotrimethylsilane.3 Reaction of this enolsilane 
with palladium acetate (trimeric) in anhydrous acetonitrile4 

smoothly affords the enone 4 (mp 59-60 0C) in 83% overall 
yield from I.5 Establishment of the /3-configured C]0 methyl 
group was then secured by reduction of the enone with rhodium 
on alumina in ethanol—a reaction which gives essentially pure 
5 (mp 98-98.5 0C) in 95% yield.6 By this route, quantities of 
5 were readily available, and the conversion of this substance 
into confertin and damsin is outlined below. 

Molecular models.suggested that deprotonation of 5 in the 
kinetic manner would occur at C7 thereby generating an eno-
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